An Evaluation of the Performance and Economics of Membranes and Separators in Single Chamber Microbial Fuel Cells Treating Domestic Wastewater

نویسندگان

  • Beate Christgen
  • Keith Scott
  • Jan Dolfing
  • Ian M. Head
  • Thomas P. Curtis
  • Zhi Zhou
چکیده

The cost of materials is one of the biggest barriers for wastewater driven microbial fuel cells (MFCs). Many studies use expensive materials with idealistic wastes. Realistically the choice of an ion selective membrane or nonspecific separators must be made in the context of the cost and performance of materials available. Fourteen membranes and separators were characterized for durability, oxygen diffusion and ionic resistance to enable informed membrane selection for reactor tests. Subsequently MFCs were operated in a cost efficient reactor design using Nafion, ethylene tetrafluoroethylene (ETFE) or polyvinylidene fluoride (PVDF) membranes, a nonspecific separator (Rhinohide), and a no-membrane design with a carbon-paper internal gas diffusion cathode. Peak power densities during polarisation, from MFCs using no-membrane, Nafion and ETFE, reached 67, 61 and 59 mWm(-2), and coulombic efficiencies of 68±11%, 71±12% and 92±6%, respectively. Under 1000 Ω, Nafion and ETFE achieved an average power density of 29 mWm(-2) compared to 24 mWm(-2) for the membrane-less reactors. Over a hypothetical lifetime of 10 years the generated energy (1 to 2.5 kWhm(-2)) would not be sufficient to offset the costs of any membrane and separator tested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment

Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...

متن کامل

Equivalent Electrical Circuit Modeling of Ceramic-Based Microbial Fuel Cells Using the Electrochemical Impedance Spectroscopy (EIS) Analysis

The effect of the thickness of ceramic membrane on the productivity of microbial fuel cells (MFCs) was investigated with respect to the electricity generation and domestic wastewater treatment efficiencies. The thickest ceramic membrane (9 mm) gained the highest coulombic efficiency (27.58±4.2 %), voltage (681.15±33.1 mV), and current and power densities (447.11±21.37 mA/m2, 63.82±10.42 mW/m2) ...

متن کامل

Performance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte

Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....

متن کامل

Performance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte

Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....

متن کامل

Effect of batch vs. continuous mode of operation on microbial desalination cell performance treating municipal wastewater

Microbial desalination cells (MDCs) have  great potential as a cost-effective and green technology for simultaneous water desalination, organic matter removal and energy production. The aim of this study was to compare the performance of a MDC under batch and continuous feeding conditions. Hence, power and current output, coulombic efficiency, electron harvest rate, desalination rate and COD re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015